Matter

Matter Observations

<u>Matter</u>: Anything that has mass & volume (takes up space)

Carefully examine each object and record all of the properties that you can

Object	Properties
1.	
2.	
3	

<u>Graded Standards</u>: Cross-Cutting Concepts: Observing patterns, structure, and function

Object	Properties
Paperclip	
Twist tie	
Balloon	
Magnet	
Paper	
Clay	
Card	
Magnifying Glass	
Packing Peanut	
Straw	

Physical Properties

Physical Property: A property of matter that can be observed without changing the identity of that matter.

-Examples: state, texture, volume (size), color, density, mass, weight, height, shape, luster, hardness, magnetism, solubility,

Measuring Physical Properties

Mass: The amount of matter in a substance. (g, mg)

Volume: The amount of space matter takes up (mL, cm³, L)

<u>Density</u>: The ratio of how much matter there is (mass) to how much space it takes up (volume)

-How close together the molecules/atoms of matter are (g/mL)

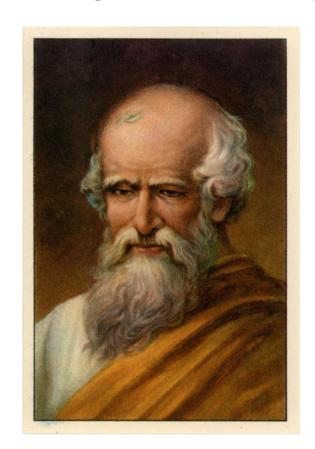
Measuring Mass

-Use a triple beam balance!

Measuring Liquid Volume

<u>Liquids</u>: graduated cylinder (best), beaker, Erlenmeyer flask

-Meniscus: The curve in the top of a liquid, always measure the MIDDLE!


Measuring Solid Volume

Regular Solids:

Length (cm) x Width (cm) x Height (cm)= Volume (cm³)

ARCHIMEDES!

Measuring Irregular Solid Volume


<u>Irregular Solids:</u>

- Fill a graduated cylinder or beaker with just enough water to cover the object.(start volume)
- Carefully put the irregular solid into the water, and record the new volume (end volume)
- Subtract (end volume (mL) start volume (mL)) = Irregular solid volume (mL)

DENSITY!

<u>Density</u>: The ratio of how much matter there is (mass) to how much space it takes up (volume)

- -How close together the molecules/atoms of matter are (g/mL)
- -Measure the mass, and divide it by the volume
- -Each element on the periodic table has a unique density at every temperature

Measuring Density

1. Measure mass (g)

2. Measure volume (mL/cm³)

3. Calculate density (mass/volume)

Measuring Mass, Volume, & Density

Object	Mass (g)	Volume (mL)	Density Eq. (g/mL)	Density (g/mL)

Physical Change

<u>Physical Change</u>: A change to matter that does not change its identity (chemical make-up)

Examples: color, paint, wet it, break/tear, fold, dissolving, crumple, melt, boiling/evaporation, freeze

Chemical Property

Chemical Property: A property of matter that can only be observed by changing the identity (chemical make-up) of that matter:

Examples: Reactivity, flammability, combustibility, ability to rust

Chemical Changes

How can you tell if a chemical change has happened?

Chemical Changes Lab

Materials:

- -5 powders
- -3 liquids
- -toothpicks

Preparation:

- -Bring tray of materials to table
- -Place beakers (water & vinegar) and toothpicks on the table
- -Spread plastic on tray
- -Wait to be invited to materials station

Chemical Changes Lab

Procedure:

- 1. When called, send ONE group member back to collect samples.
- Using the straw, collect THREE samples of the same powder on your plastic, be sure to remember which powder!
- 3. Return to the table & record powder name in data table.
- 4. Using the straw, mix 3-4 drops of water with the powder, and mix with a toothpick for 5 seconds. Record observations.
- 5. Using the dropper, mix 304 drops of vinegar with the powder, and mix with a toothpick for 5 seconds. Record observations.
- Raise your hand to that Ms. Stewart will bring you lodine. When given your sample, mix for with a toothpick for 5 seconds. Record observations.

Chemical Changes Lab

- 7. Using a clean spot or a new piece of plastic, send a different person to collect THREE samples of your next powder.
- 8. Repeat steps 2-6
- 9. When you finish all 5 powders, clean your stations, return your materials, and glue your data table into your notebook.
- 10. After your data table, record 5 things that you observed during this lab.
- 11. Turn in your notebook and read quietly!

Chemical Changes

<u>Chemical Change</u>: A change to matter that changes the identity (chemical make-up,) or the way that the atoms are bonded to each other.

Examples: baking soda & vinegar reaction, burning, baking powder & water, oxidation (rust), digestion, cooking/baking

Evidence: releases a gas (bubbles), changes color, change of temperature,

Chemical Changes

Law of Conservation of Mass: Matter cannot be created or destroyed, it can only change form. The mass (amount of matter) before a chemical or physical change will be the same as the mass after a chemical or physical change.